Search results
Results from the WOW.Com Content Network
Amine. In chemistry, amines (/ ə ˈ m iː n, ˈ æ m iː n /, [1] [2] UK also / ˈ eɪ m iː n / [3]) are compounds and functional groups that contain a basic nitrogen atom with a lone pair.Formally, amines are derivatives of ammonia (NH 3), wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group [4] (these may respectively be called alkylamines ...
In chemistry, pyramidal inversion (also umbrella inversion) is a fluxional process in compounds with a pyramidal molecule, such as ammonia (NH 3) "turns inside out". [1] [2] It is a rapid oscillation of the atom and substituents, the molecule or ion passing through a planar transition state. [3]
The Hinsberg reaction is a chemical test for the detection of primary, secondary and tertiary amines.The reaction was first described by Oscar Hinsberg in 1890. [1] [2] In this test, the amine is shaken well with the Hinsberg reagent (benzenesulfonyl chloride) in the presence of aqueous alkali (either KOH or NaOH).
The Schotten–Baumann reaction is a method to synthesize amides from amines and acid chlorides: An example of a Schotten-Baumann reaction. Benzylamine reacts with acetyl chloride under Schotten-Baumann conditions to form N-benzylacetamide. Schotten–Baumann reaction also refers to the conversion of acid chloride to esters.
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen.
Primary amines are usually not used for enamine synthesis due to the preferential formation of the more thermodynamically stable imine species. [11] Methyl ketone self-condensation is a side-reaction which can be avoided through the addition of TiCl 4 [ 12 ] into the reaction mixture (to act as a water scavenger ).
A typical example of classic Ullmann biaryl coupling is the conversion of ortho-chloronitrobenzene into 2,2'-dinitrobiphenyl with a copper - bronze alloy. [9] [10] 2 C 6 H 4 (NO 2)Cl + 2 Cu → (C 6 H 4 (NO 2)) 2 + 2 CuCl. The reaction has been applied to fairly elaborate substrates. Ullmann reaction