Search results
Results from the WOW.Com Content Network
The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f (x) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.
Define e x as the value of the infinite series = =! = + +! +! +! + (Here n! denotes the factorial of n. One proof that e is irrational uses a special case of this formula.) Inverse of logarithm integral.
In this setting, e 0 = 1, and e x is invertible with inverse e −x for any x in B. If xy = yx, then e x + y = e x e y, but this identity can fail for noncommuting x and y. Some alternative definitions lead to the same function. For instance, e x can be defined as (+).
For real non-zero values of x, the exponential integral Ei(x) is defined as = =. The Risch algorithm shows that Ei is not an elementary function.The definition above can be used for positive values of x, but the integral has to be understood in terms of the Cauchy principal value due to the singularity of the integrand at zero.
We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye X Y −1. The next key result is this one:
For example, it will cost you $25,000 to borrow $50,000 at a 1.50 factor rate ($50,000 x 1.5 = $75,000). What is a 1.35 factor rate?A 1.35 factor rate is a mid-range rate lenders charge to borrow ...
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
A power series with coefficients in the field of algebraic numbers = =! ¯ [[]]is called an E-function [1] if it satisfies the following three conditions: . It is a solution of a non-zero linear differential equation with polynomial coefficients (this implies that all the coefficients c n belong to the same algebraic number field, K, which has finite degree over the rational numbers);