Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Help; Learn to edit; Community portal; Recent changes; Upload file
The graph of a real single-variable quadratic function is a parabola. If a quadratic function is equated with zero, then the result is a quadratic equation . The solutions of a quadratic equation are the zeros (or roots ) of the corresponding quadratic function, of which there can be two, one, or zero.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Graphs of quadratic functions shifted upward and to the right by 0, 5, 10, and 15. In analytic geometry , the graph of any quadratic function is a parabola in the xy -plane. Given a quadratic polynomial of the form a ( x − h ) 2 + k {\displaystyle a(x-h)^{2}+k} the numbers h and k may be interpreted as the Cartesian coordinates of the vertex ...
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
The function f(x) = ax 2 + bx + c is a quadratic function. [16] The graph of any quadratic function has the same general shape, which is called a parabola. The location and size of the parabola, and how it opens, depend on the values of a, b, and c. If a > 0, the parabola has a minimum point and opens upward.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.