Search results
Results from the WOW.Com Content Network
Some constants, such as the ideal gas constant, R, do not describe the state of a system, and so are not properties. On the other hand, some constants, such as K f (the freezing point depression constant, or cryoscopic constant ), depend on the identity of a substance, and so may be considered to describe the state of a system, and therefore ...
The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol R or R. It is the molar equivalent to the Boltzmann constant , expressed in units of energy per temperature increment per amount of substance , rather than energy per temperature increment per particle .
These include the Boltzmann constant, which gives the correspondence of the dimension temperature to the dimension of energy per degree of freedom, and the Avogadro constant, which gives the correspondence of the dimension of amount of substance with the dimension of count of entities (the latter formally regarded in the SI as being dimensionless).
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
The ideal gas model has been explored in both the Newtonian dynamics (as in "kinetic theory") and in quantum mechanics (as a "gas in a box"). The ideal gas model has also been used to model the behavior of electrons in a metal (in the Drude model and the free electron model), and it is one of the most important models in statistical mechanics.
In other words, that theory predicts that the molar heat capacity at constant volume c V,m of all monatomic gases will be the same; specifically, c V,m = 3 / 2 R. where R is the ideal gas constant, about 8.31446 J⋅K −1 ⋅mol −1 (which is the product of the Boltzmann constant k B and the Avogadro constant).
This relation was built on the reasoning that energy must be supplied to raise the temperature of the gas and for the gas to do work in a volume changing case. According to this relation, the difference between the specific heat capacities is the same as the universal gas constant. This relation is represented by the difference between Cp and Cv:
Therefore, the kinetic energy per kelvin of one mole of monatomic ideal gas (D = 3) is = =, where is the Avogadro constant, and R is the ideal gas constant. Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: