enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trinomial expansion - Wikipedia

    en.wikipedia.org/wiki/Trinomial_expansion

    Layers of Pascal's pyramid derived from coefficients in an upside-down ternary plot of the terms in the expansions of the powers of a trinomial – the number of terms is clearly a triangular number. In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by

  3. Pascal's pyramid - Wikipedia

    en.wikipedia.org/wiki/Pascal's_pyramid

    Pascal's pyramid's first five layers. Each face (orange grid) is Pascal's triangle. Arrows show derivation of two example terms. In mathematics, Pascal's pyramid is a three-dimensional arrangement of the trinomial numbers, which are the coefficients of the trinomial expansion and the trinomial distribution. [1]

  4. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    This proof of the multinomial theorem uses the binomial theorem and induction on m.. First, for m = 1, both sides equal x 1 n since there is only one term k 1 = n in the sum. For the induction step, suppose the multinomial theorem holds for m.

  5. Trinomial - Wikipedia

    en.wikipedia.org/wiki/Trinomial

    For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.

  6. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.

  7. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    In 1737, Euler related the study of prime numbers to what is known now as the Riemann zeta function: he showed that the value () reduces to a ratio of two infinite products, Π p / Π (p–1), for all primes p, and that the ratio is infinite. [1] [2] In 1775, Euler stated the theorem for the cases of a + nd, where a = 1. [3]

  8. Trinomial triangle - Wikipedia

    en.wikipedia.org/wiki/Trinomial_triangle

    The middle entries of the trinomial triangle 1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, … (sequence A002426 in the OEIS) were studied by Euler and are known as central trinomial coefficients. The only known prime central trinomial coefficients are 3, 7 and 19 at n = 2, 3 and 4. The -th central trinomial coefficient is given by

  9. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial x 4 − 1 {\displaystyle x^{4}-1} can be factored as follows: