Search results
Results from the WOW.Com Content Network
The term flip-flop has historically referred generically to both level-triggered (asynchronous, transparent, or opaque) and edge-triggered (synchronous, or clocked) circuits that store a single bit of data using gates. [1] Modern authors reserve the term flip-flop exclusively for edge-triggered storage elements and latches for level-triggered ones.
Low power flip-flops [1] are flip-flops that are designed for low-power electronics, such as smartphones and notebooks. A flip-flop, or latch, is a circuit that has two stable states and can be used to store state information.
D : Q; where Dff is the D-input of a D-type flip-flop, D is the module information input (without CE input), and Q is the D-type flip-flop output. This type of clock gating is race-condition-free and is preferred for FPGA designs. For FPGAs, every D-type flip-flop has an additional CE input signal.
In digital electronics, a synchronous circuit is a digital circuit in which the changes in the state of memory elements are synchronized by a clock signal. In a sequential digital logic circuit, data is stored in memory devices called flip-flops or latches. The output of a flip-flop is constant until a pulse is applied to its "clock" input ...
The output of each flip-flop only changes when triggered by the clock pulse, so changes to the logic signals throughout the circuit all begin at the same time, at regular intervals, synchronized by the clock. The output of all the storage elements (flip-flops) in the circuit at any given time, the binary data they contain, is called the state ...
In digital electronics, especially computing, hardware registers are circuits typically composed of flip-flops, often with many characteristics similar to memory, such as: [citation needed] The ability to read or write multiple bits at a time, and; Using an address to select a particular register in a manner similar to a memory address.
Static random-access memory (static RAM or SRAM) is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory; data is lost when power is removed. The static qualifier differentiates SRAM from dynamic random-access memory (DRAM):
When the input is below a different (lower) chosen threshold the output is low, and when the input is between the two levels the output retains its value. This dual threshold action is called hysteresis and implies that the Schmitt trigger possesses memory and can act as a bistable multivibrator (latch or flip-flop). There is a close relation ...