Search results
Results from the WOW.Com Content Network
In topology and related areas of mathematics a uniformly connected space or Cantor connected space is a uniform space U such that every uniformly continuous function from U to a discrete uniform space is constant. A uniform space U is called uniformly disconnected if it is not uniformly connected.
In mathematics, the Fulton–Hansen connectedness theorem is a result from intersection theory in algebraic geometry, for the case of subvarieties of projective space with codimension large enough to make the intersection have components of dimension at least 1.
Thus, when discussing simply connected topological spaces, it is far more common to speak of simple connectivity than simple connectedness. On the other hand, in fields without a formally defined notion of connectivity, the word may be used as a synonym for connectedness. Another example of connectivity can be found in regular tilings.
A topological space X is path-connected if and only if its 0th homotopy group vanishes identically, as path-connectedness implies that any two points x 1 and x 2 in X can be connected with a continuous path which starts in x 1 and ends in x 2, which is equivalent to the assertion that every mapping from S 0 (a discrete set of two points) to X ...
The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...
Zariski's connectedness theorem, a generalization of Zariski's main theorem Topics referred to by the same term This disambiguation page lists mathematics articles associated with the same title.
In the mathematical field of topology, a uniform space is a set with additional structure that is used to define uniform properties, such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups , but the concept is designed to formulate the weakest axioms needed for most proofs ...
Connectedness features prominently in the definition of total orders: a total (or linear) order is a partial order in which any two elements are comparable; that is, the order relation is connected. Similarly, a strict partial order that is connected is a strict total order.