enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernoulli differential equation - Wikipedia

    en.wikipedia.org/.../Bernoulli_differential_equation

    The earliest solution, however, was offered by Gottfried Leibniz, who published his result in the same year and whose method is the one still used today. [5] Bernoulli equations are special because they are nonlinear differential equations with known exact solutions.

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Many important problems involve functions of several variables. Solutions of boundary value problems for the Laplace equation satisfy the Dirichlet's principle. Plateau's problem requires finding a surface of minimal area that spans a given contour in space: a solution can often be found by dipping a frame in soapy water.

  4. List of nonlinear ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_nonlinear_ordinary...

    Can be reduced to a Bernoulli differential equation; a general case of the Jacobi equation [11] Elliptic function: 1 ′ = () Equation for which the elliptic functions are solutions [12] Euler's differential equation: 1

  5. Jacob Bernoulli - Wikipedia

    en.wikipedia.org/wiki/Jacob_Bernoulli

    In May 1690, in a paper published in Acta Eruditorum, Jacob Bernoulli showed that the problem of determining the isochrone is equivalent to solving a first-order nonlinear differential equation. The isochrone, or curve of constant descent, is the curve along which a particle will descend under gravity from any point to the bottom in exactly the ...

  6. Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Riccati_equation

    The substitution that is needed to solve this Bernoulli equation is = Substituting = + directly into the Riccati equation yields the linear equation ′ + (+) = A set of solutions to the Riccati equation is then given by = + where z is the general solution to the aforementioned linear equation.

  7. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The built-in beams shown in the figure below are statically indeterminate. To determine the stresses and deflections of such beams, the most direct method is to solve the Euler–Bernoulli beam equation with appropriate boundary conditions. But direct analytical solutions of the beam equation are possible only for the simplest cases.

  8. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    The equation α + ⁠ η / r 3 ⁠ r = 0 is the fundamental differential equation for the two-body problem Bernoulli solved in 1734. Notice for this approach forces have to be determined first, then the equation of motion resolved.

  9. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The solution of the initial value problem in terms of characteristic variables is finally very simple. ... The energy equation is an integral form of the Bernoulli ...