Search results
Results from the WOW.Com Content Network
In physics, Green's theorem finds many applications. One is solving two-dimensional flow integrals, stating that the sum of fluid outflowing from a volume is equal to the total outflow summed about an enclosing area.
If the problem is to solve a Dirichlet boundary value problem, the Green's function should be chosen such that G(x,x′) vanishes when either x or x′ is on the bounding surface. Thus only one of the two terms in the surface integral remains. If the problem is to solve a Neumann boundary value problem, it might seem logical to choose Green's ...
They have solved numerous problems which exhibit circular cylindrical symmetry employing the toroidal functions. The above expressions for the Green's function for the three-variable Laplace operator are examples of single summation expressions for this Green's function. There are also single-integral expressions for this Green's function.
This form is used to construct solutions to Dirichlet boundary condition problems. Solutions for Neumann boundary condition problems may also be simplified, though the Divergence theorem applied to the differential equation defining Green's functions shows that the Green's function cannot integrate to zero on the boundary, and hence cannot ...
Green's work on the motion of waves in a canal (resulting in what is known as Green's law) anticipates the WKB approximation of quantum mechanics, while his research on light-waves and the properties of the Aether produced what is now known as the Cauchy-Green tensor. Green's theorem and functions were important tools in classical mechanics ...
Poisson's electrical and magnetical investigations were generalized and extended in 1828 by George Green. Green's treatment is based on the properties of the function already used by Lagrange, Laplace, and Poisson, which represents the sum of all the electric or magnetic charges in the field, divided by their respective distances from some given point: to this function Green gave the name ...
For premium support please call: 800-290-4726 more ways to reach us
Thus, on the official website of the Clay Mathematics Institute, these seven problems are officially called the Millennium Problems. To date, the only Millennium Prize problem to have been solved is the Poincaré conjecture. The Clay Institute awarded the monetary prize to Russian mathematician Grigori Perelman in 2010.