Search results
Results from the WOW.Com Content Network
The KP equation was first written in 1970 by Soviet physicists Boris B. Kadomtsev (1928–1998) and Vladimir I. Petviashvili (1936–1993); it came as a natural generalization of the KdV equation (derived by Korteweg and De Vries in 1895). Whereas in the KdV equation waves are strictly one-dimensional, in the KP equation this restriction is ...
The concentration of the species LH is equal to the sum of the concentrations of the two micro-species with the same chemical formula, labelled L 1 H and L 2 H. The constant K 2 is for a reaction with these two micro-species as products, so that [LH] = [L 1 H] + [L 2 H] appears in the numerator, and it follows that this macro-constant is equal ...
The Green Book is a direct successor of the Manual of Symbols and Terminology for Physicochemical Quantities and Units, originally prepared for publication on behalf of IUPAC's Physical Chemistry Division by M. L. McGlashen in 1969. A full history of the Green Book's various editions is provided in the historical introduction to the third edition.
Usually the symbol for the quantity with a subscript of some reference to the quantity is used, or the quantity is written with the reference to the chemical in round brackets. For example, the mass of water might be written in subscripts as m H 2 O , m water , m aq , m w (if clear from context) etc., or simply as m (H 2 O).
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...