enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    Given , the Radon-Nikodym theorem implies that there is [3] a -measurable random variable ():, called the conditional probability, such that () = for every , and such a random variable is uniquely defined up to sets of probability zero. A conditional probability is called regular if ⁡ () is a probability measure on (,) for all a.e.

  3. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).

  4. Conditioning (probability) - Wikipedia

    en.wikipedia.org/wiki/Conditioning_(probability)

    Conditional probability may be treated as a special case of conditional expectation. Namely, P ( A | X) = E ( Y | X) if Y is the indicator of A. Therefore the conditional probability also depends on the partition α X generated by X rather than on X itself; P ( A | g(X) ) = P (A | X) = P (A | α), α = α X = α g(X).

  5. Borel–Kolmogorov paradox - Wikipedia

    en.wikipedia.org/wiki/Borel–Kolmogorov_paradox

    In case (1) above, the conditional probability that the longitude λ lies in a set E given that φ = 0 can be written P(λ ∈ E | φ = 0). Elementary probability theory suggests this can be computed as P(λ ∈ E and φ = 0)/P(φ = 0), but that expression is not well-defined since P(φ = 0) = 0.

  6. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  7. Regular conditional probability - Wikipedia

    en.wikipedia.org/.../Regular_conditional_probability

    In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel .

  8. Monty Hall problem - Wikipedia

    en.wikipedia.org/wiki/Monty_Hall_problem

    Many probability text books and articles in the field of probability theory derive the conditional probability solution through a formal application of Bayes' theorem⁠ — among them books by Gill [51] and Henze. [52] Use of the odds form of Bayes' theorem, often called Bayes' rule, makes such a derivation more transparent. [34] [53]

  9. Conditional probability table - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability_table

    The first column sum is the probability that x =0 and y equals any of the values it can have – that is, the column sum 6/9 is the marginal probability that x=0. If we want to find the probability that y=0 given that x=0, we compute the fraction of the probabilities in the x=0 column that have the value y=0, which is 4/9 ÷