Search results
Results from the WOW.Com Content Network
Slip systems in zirconium alloys. 𝒃 and 𝒏 are the slip direction and plane, respectively, and 𝝎 is the rotation axis calculated in the present work, orthogonal to both the slip plane normal and slip direction. The crystal direction of the rotation axis vectors is labelled on the IPF colour key.
Schmid's Law states that the critically resolved shear stress (τ) is equal to the stress applied to the material (σ) multiplied by the cosine of the angle with the vector normal to the glide plane (φ) and the cosine of the angle with the glide direction (λ). Which can be expressed as: [2] =
The Schmid Factor for an axial applied stress in the [] direction, along the primary slip plane of (), with the critical applied shear stress acting in the [] direction can be calculated by quickly determining if any of the dot product between the axial applied stress and slip plane, or dot product of axial applied stress and shear stress ...
Dislocations are generated on a single slip plane They point out that a dislocation segment (Frank–Read source), lying in a slip plane and pinned at both ends, is a source of an unlimited number of dislocation loops. In this way the grouping of dislocations into an avalanche of a thousand or so loops on a single slip plane can be understood. [19]
Consider a straight dislocation in a crystal slip plane with its two ends, A and B, pinned. If a shear stress τ {\displaystyle \tau } is exerted on the slip plane then a force F = τ ⋅ b x {\displaystyle F=\tau \cdot bx} , where b is the Burgers vector of the dislocation and x is the distance between the pinning sites A and B, is exerted on ...
Each time a dislocation moves through a crystal, part of the crystal shifts by one lattice point along a plane, relative to the rest of the crystal. The plane that separates the shifted and unshifted regions along which the movement takes place is the slip plane. To allow for this movement, all ionic bonds along the plane must be broken. If all ...
This slip is precisely large enough to get to the elongation that occurs in the final state. Note that there is no slipping going on in the final state; the term slip area refers to the slippage that occurred during the loading process. Note further that the location of the slip area depends on the initial state and the loading process.
A primary difficulty with analysis is locating the most-probable slip plane for any given situation. [2] Many landslides have only been analyzed after the fact. More recently slope stability radar technology has been employed, particularly in the mining industry, to gather real-time data and assist in determining the likelihood of slope failure.