Search results
Results from the WOW.Com Content Network
As (+) = and (+) + =, the sum and the product of conjugate expressions do not involve the square root anymore. This property is used for removing a square root from a denominator , by multiplying the numerator and the denominator of a fraction by the conjugate of the denominator (see Rationalisation ).
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
Square root of 2, Pythagoras constant [4] 1.41421 35623 73095 04880 [Mw 2] [OEIS 3] Positive root of = 1800 to 1600 BCE [5] Square root of 3, Theodorus' constant [6] 1.73205 08075 68877 29352 [Mw 3] [OEIS 4] Positive root of = 465 to 398 BCE
These solutions may be used to accurately approximate the square root of n by rational numbers of the form x/y. This equation was first studied extensively in India starting with Brahmagupta , [ 1 ] who found an integer solution to 92 x 2 + 1 = y 2 {\displaystyle 92x^{2}+1=y^{2}} in his Brāhmasphuṭasiddhānta circa 628. [ 2 ]
If k ≥ n, one writes k = qn + r with 0 ≤ r < n (Euclidean division), and =; then one proceeds as above by multiplying by . If the denominator is linear in some square root, say a + b x , {\displaystyle a+b{\sqrt {x}},} rationalisation consists of multiplying the numerator and the denominator by a − b x , {\displaystyle a-b{\sqrt {x ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.