enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  3. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    where sgn(y) = 1 if y ≥ 0 and sgn(y) = −1 otherwise. [30] In particular, the imaginary parts of the original number and the principal value of its square root have the same sign. The real part of the principal value of the square root is always nonnegative. For example, the principal square roots of ±i are given by:

  4. Conjugate (square roots) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_(square_roots)

    As (+) = and (+) + =, the sum and the product of conjugate expressions do not involve the square root anymore. This property is used for removing a square root from a denominator, by multiplying the numerator and the denominator of a fraction by the conjugate of the denominator (see Rationalisation).

  5. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]

  6. Periodic continued fraction - Wikipedia

    en.wikipedia.org/wiki/Periodic_continued_fraction

    In particular, if n is any non-square positive integer, the regular continued fraction expansion of √ n contains a repeating block of length m, in which the first m − 1 partial denominators form a palindromic string.

  7. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    One can prove [citation needed] that = is the largest possible number for which the stopping criterion | + | < ensures ⌊ + ⌋ = ⌊ ⌋ in the algorithm above.. In implementations which use number formats that cannot represent all rational numbers exactly (for example, floating point), a stopping constant less than 1 should be used to protect against round-off errors.

  8. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  9. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    The rational approximation of the square root of two derived from four iterations of the Babylonian method after starting with a 0 = 1 (⁠ 665,857 / 470,832 ⁠) is too large by about 1.6 × 10 −12; its square is ≈ 2.000 000 000 0045.