Search results
Results from the WOW.Com Content Network
Figure 1: Zindler curve. Any of the chords of equal length cuts the curve and the enclosed area into halves. Figure 2: Examples of Zindler curves with a = 8 (blue), a = 16 (green) and a = 24 (red). A Zindler curve is a simple closed plane curve with the defining property that: (L) All chords which cut the curve length into halves have the same ...
The original formulation of the Schoenflies problem states that not only does every simple closed curve in the plane separate the plane into two regions, one (the "inside") bounded and the other (the "outside") unbounded; but also that these two regions are homeomorphic to the inside and outside of a standard circle in the plane.
The inscribed square problem, also known as the square peg problem or the Toeplitz' conjecture, is an unsolved question in geometry: Does every plane simple closed curve contain all four vertices of some square? This is true if the curve is convex or piecewise smooth and in other special cases. The problem was proposed by Otto Toeplitz in 1911. [1]
Many distinct curves are commonly called ovals or are said to have an "oval shape". Generally, to be called an oval, a plane curve should resemble the outline of an egg or an ellipse. In particular, these are common traits of ovals: they are differentiable (smooth-looking), [1] simple (not self-intersecting), convex, closed, plane curves;
In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform , the name given to these shapes by Leonhard Euler . [ 1 ]
Cotes referred to the different forms as "cases". The equations of the curves above correspond respectively to his 5 cases. [2] The Diagram shows representative examples of the different curves. The centre is marked by ‘O’ and the radius from O to the curve is shown when θ is zero. The value of ε is zero unless shown.
A smooth plane curve is a curve in a real Euclidean plane and is a one-dimensional smooth manifold.This means that a smooth plane curve is a plane curve which "locally looks like a line", in the sense that near every point, it may be mapped to a line by a smooth function.
A plane curve is the image of any continuous function from an interval to the Euclidean plane.Intuitively, it is a set of points that could be traced out by a moving point. More specifically, smooth curves generally at least require that the function from the interval to the plane be continuously differentiable, and in some contexts are defined to require higher derivative