Search results
Results from the WOW.Com Content Network
Figure 1: Zindler curve. Any of the chords of equal length cuts the curve and the enclosed area into halves. Figure 2: Examples of Zindler curves with a = 8 (blue), a = 16 (green) and a = 24 (red). A Zindler curve is a simple closed plane curve with the defining property that: (L) All chords which cut the curve length into halves have the same ...
The original formulation of the Schoenflies problem states that not only does every simple closed curve in the plane separate the plane into two regions, one (the "inside") bounded and the other (the "outside") unbounded; but also that these two regions are homeomorphic to the inside and outside of a standard circle in the plane.
In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform , the name given to these shapes by Leonhard Euler . [ 1 ]
A structural piece of stone, wood or metal jutting from a wall to carry a superincumbent weight. A corbie gable from Zaltbommel Corbiesteps A series of steps along the slopes of a gable. [17] Also called crow-steps. A gable featuring corbiesteps is known as a corbie gable, crow-step gable, or stepped gable. [18] Corinthian order
Many distinct curves are commonly called ovals or are said to have an "oval shape". Generally, to be called an oval, a plane curve should resemble the outline of an egg or an ellipse. In particular, these are common traits of ovals: they are differentiable (smooth-looking), [1] simple (not self-intersecting), convex, closed, plane curves;
A Jordan curve or a simple closed curve in the plane R 2 is the image C of an injective continuous map of a circle into the plane, φ: S 1 → R 2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic.
Piecewise-circular curves (1 C, 16 P) Pages in category "Plane curves" The following 45 pages are in this category, out of 45 total.
His research was then mainly in the area of manifolds, particularly geometric topology and related abstract algebra included in surgery theory, of which he was one of the founders. In 1964 he introduced the Brauer–Wall group of a field. His 1970 research monograph "Surgery on Compact Manifolds" is a major reference work in geometric topology.