Search results
Results from the WOW.Com Content Network
In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred ...
They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1] According to an IUPAC definition, [2] for a reaction with a single rate-determining step, the charge transfer coefficient for a cathodic reaction (the cathodic transfer coefficient, α c) is defined as:
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Fig. 1. The parabolas of outer-sphere reorganisation energy of the system two spheres in a solvent. Parabola i: the charge on the first, transfer to the second, parabola f: the charge on the second, transfer to the first. The abscissa is the transferred amount of charge Δe or the induced polarization P, the ordinate the Gibbs free energy.
18-Crown-6 can be synthesized by the Williamson ether synthesis using potassium ion as the template cation. Structure of nickel-aquo nitrate complex of the ligand derived from the templated trimerization of 2-aminobenzaldehyde. [5] The phosphorus analogue of an aza crown can be prepared by a template reaction. [6]
Charge-transfer may refer to: ... Charge-transfer complex; Charge transfer band (absorption band) Charge-exchange ionization, a form of gas phase ionization; See also
This is known as the charge transfer rate. The second is the rate at which reactants are provided, and products removed, from the electrode region by various processes including diffusion, migration, and convection. The latter is known as the mass-transfer rate [Note 1]. These two rates determine the concentrations of the reactants and products ...
This equation is characteristic of incoherent hopping transport, which takes place at low concentrations, where the limiting factor is the exponential decay of hopping probability with inter-site distance. [4] Sometimes this relation is expressed for conductivity, rather than mobility: