Search results
Results from the WOW.Com Content Network
Calorie (15°C) Cal-15 (kg-cal-15) ... Mcal 15: 1.0 Mcal 15 (4.2 MJ) kilocalorie (15°C) kcal-15 (g-cal-15) ... Statistics; Cookie statement;
1 cal / °C⋅g = 1 Cal / °C⋅kg = 1 kcal / °C⋅kg = 4184 J / kg⋅K [20] = 4.184 kJ / kg⋅K . Note that while cal is 1 ⁄ 1000 of a Cal or kcal, it is also per gram instead of kilo gram : ergo, in either unit, the specific heat capacity of water is approximately 1.
Other units still in use worldwide in some contexts are the kilocalorie per gram (Cal/g or kcal/g), mostly in food-related topics, and watt-hours per kilogram (W⋅h/kg) in the field of batteries. In some countries the Imperial unit BTU per pound (Btu/lb) is used in some engineering and applied technical fields. [1]
The "grand calorie" (also "kilocalorie", "kilogram-calorie", or "food calorie"; "kcal" or "Cal") is 1000 cal, that is, exactly 4184 J. It was originally defined so that the heat capacity of 1 kg of water would be 1 kcal/°C. With these units of heat energy, the units of heat capacity are 1 cal/°C = 4.184 J/K ; 1 kcal/°C = 4184 J/K.
The amount of energy required to warm one gram of air-free water from 3.5 to 4.5 °C at standard atmospheric pressure. [b] 15 °C calorie: cal 15: ≈ 4.1855 J ≈ 0.003 9671 BTU ≈ 1.1626 × 10 −6 kW⋅h ≈ 2.6124 × 10 19 eV The amount of energy required to warm one gram of air-free water from 14.5 to 15.5 °C at standard atmospheric ...
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter ...
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10 −23 J K −1.The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).