Search results
Results from the WOW.Com Content Network
Circular buffering makes a good implementation strategy for a queue that has fixed maximum size. Should a maximum size be adopted for a queue, then a circular buffer is a completely ideal implementation; all queue operations are constant time. However, expanding a circular buffer requires shifting memory, which is comparatively costly.
Representation of a FIFO queue with enqueue and dequeue operations. Depending on the application, a FIFO could be implemented as a hardware shift register, or using different memory structures, typically a circular buffer or a kind of list. For information on the abstract data structure, see Queue (data structure).
A queue has two ends, the top, which is the only position at which the push operation may occur, and the bottom, which is the only position at which the pop operation may occur. A queue may be implemented as circular buffers and linked lists, or by using both the stack pointer and the base pointer.
By having two queues, one for hot-path items and the other for slow-path items, items are first placed in the slow-path queue and after a second access of the items placed in the hot-path items. Because references to added items are longer hold than in the LRU and LRU/2 algorithm, it has a better hot-path queue which improves the hit rate of ...
Circular references can appear in computer programming when one piece of code requires the result from another, but that code needs the result from the first. For example, the two functions, posn and plus1 in the following Python program comprise a circular reference: [further explanation needed]
A less common convention is to make it point to the first node of the list; in that case, the list is said to be 'circular' or 'circularly linked'; otherwise, it is said to be 'open' or 'linear'. It is a list where the last node pointer points to the first node (i.e., the "next link" pointer of the last node has the memory address of the first node
A Round Robin preemptive scheduling example with quantum=3. Round-robin (RR) is one of the algorithms employed by process and network schedulers in computing. [1] [2] As the term is generally used, time slices (also known as time quanta) [3] are assigned to each process in equal portions and in circular order, handling all processes without priority (also known as cyclic executive).
Retrieved from "https://en.wikipedia.org/w/index.php?title=Circular_queue&oldid=361316488"This page was last edited on 10 May 2010, at 18:12 (UTC). (UTC).