enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    For a sample of n values, a method of moments estimator of the population excess kurtosis can be defined as = = = (¯) [= (¯)] where m 4 is the fourth sample moment about the mean, m 2 is the second sample moment about the mean (that is, the sample variance), x i is the i th value, and ¯ is the sample mean. This formula has the simpler ...

  3. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    For medium size samples (<), the parameters of the asymptotic distribution of the kurtosis statistic are modified [37] For small sample tests (<) empirical critical values are used. Tables of critical values for both statistics are given by Rencher [38] for k = 2, 3, 4.

  4. L-moment - Wikipedia

    en.wikipedia.org/wiki/L-moment

    Grouping these by order statistic counts the number of ways an element of an n element sample can be the j th element of an r element subset, and yields formulas of the form below. Direct estimators for the first four L-moments in a finite sample of n observations are: [ 6 ]

  5. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    The plot of excess kurtosis as a function of the variance and the mean shows that the minimum value of the excess kurtosis (−2, which is the minimum possible value for excess kurtosis for any distribution) is intimately coupled with the maximum value of variance (1/4) and the symmetry condition: the mean occurring at the midpoint (μ = 1/2).

  6. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Therefore, the mean of the sequence becomes 47.5, and the median is 49.5. Based on the formula of nonparametric skew, defined as () /, the skew is negative. Similarly, we can make the sequence positively skewed by adding a value far above the mean, which is probably a positive outlier, e.g. (49, 50, 51, 60), where the mean is 52.5, and the ...

  7. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis).

  8. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  9. Geometric distribution - Wikipedia

    en.wikipedia.org/wiki/Geometric_distribution

    [6]: 115 The excess kurtosis of a distribution is the difference between its kurtosis and the kurtosis of a normal distribution, . [10]: 217 Therefore, the excess kurtosis of the geometric distribution is +.