Search results
Results from the WOW.Com Content Network
What follows is an example of a Lua function that can be iteratively called to train an mlp Module on input Tensor x, target Tensor y with a scalar learningRate: function gradUpdate ( mlp , x , y , learningRate ) local criterion = nn .
PyTorch supports various sub-types of Tensors. [29] Note that the term "tensor" here does not carry the same meaning as tensor in mathematics or physics. The meaning of the word in machine learning is only superficially related to its original meaning as a certain kind of object in linear algebra. Tensors in PyTorch are simply multi-dimensional ...
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]
To avoid this ambiguity, Pandas supports the syntax data.loc['a'] as an alternative way to filter using the index. Pandas also supports the syntax data.iloc[n], which always takes an integer n and returns the nth value, counting from 0. This allows a user to act as though the index is an array-like sequence of integers, regardless of how it is ...
For a (0,2) tensor, [1] twice contracting with the inverse metric tensor and contracting in different indices raises each index: =. Similarly, twice contracting with the metric tensor and contracting in different indices lowers each index:
Python has array index and array slicing expressions in lists, denoted as a[key], a [start: stop] or a [start: stop: step]. Indexes are zero-based, and negative indexes are relative to the end. Slices take elements from the start index up to, but not including, the stop index.
In May 2016, Google announced its Tensor processing unit (TPU), an application-specific integrated circuit (ASIC, a hardware chip) built specifically for machine learning and tailored for TensorFlow. A TPU is a programmable AI accelerator designed to provide high throughput of low-precision arithmetic (e.g., 8-bit ), and oriented toward using ...
The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra. The outer product contrasts with: The dot product (a special case of " inner product "), which takes a pair of coordinate vectors as input and produces a scalar