Search results
Results from the WOW.Com Content Network
This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).
In mathematical optimization, the fundamental theorem of linear programming states, in a weak formulation, that the maxima and minima of a linear function over a convex polygonal region occur at the region's corners.
The max-flow min-cut theorem is a special case of the strong duality theorem: flow-maximization is the primal LP, and cut-minimization is the dual LP. See Max-flow min-cut theorem#Linear program formulation. Other graph-related theorems can be proved using the strong duality theorem, in particular, Konig's theorem. [9]
This description assumes the ILP is a maximization problem.. The method solves the linear program without the integer constraint using the regular simplex algorithm.When an optimal solution is obtained, and this solution has a non-integer value for a variable that is supposed to be integer, a cutting plane algorithm may be used to find further linear constraints which are satisfied by all ...
Wigner's theorem, proved by Eugene Wigner in 1931, [2] is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations , translations , and CPT transformations are represented on the Hilbert space of states .
In mathematics, the relaxation of a (mixed) integer linear program is the problem that arises by removing the integrality constraint of each variable. For example, in a 0–1 integer program , all constraints are of the form
"The linear complementarity problem, sufficient matrices, and the criss-cross method" (PDF). Linear Algebra and Its Applications. 187: 1– 14. doi: 10.1016/0024-3795(93)90124-7. Murty, Katta G. (January 1972). "On the number of solutions to the complementarity problem and spanning properties of complementary cones" (PDF).