Ads
related to: powers of exponents test printable pdf free
Search results
Results from the WOW.Com Content Network
In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).
As one special case, it can be used to prove that if n is a positive integer then 4 divides () if and only if n is not a power of 2. It follows from Legendre's formula that the p -adic exponential function has radius of convergence p − 1 / ( p − 1 ) {\displaystyle p^{-1/(p-1)}} .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power.
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: 7 = 7 1 , 9 = 3 2 and 64 = 2 6 are prime powers, while 6 = 2 × 3 , 12 = 2 2 × 3 and 36 = 6 2 = 2 2 × 3 2 are not.
Illustration of the power of a statistical test, for a two sided test, through the probability distribution of the test statistic under the null and alternative hypothesis. α is shown as the blue area , the probability of rejection under null, while the red area shows power, 1 − β , the probability of correctly rejecting under the alternative.
Solving for , = = = = = Thus, the power rule applies for rational exponents of the form /, where is a nonzero natural number. This can be generalized to rational exponents of the form p / q {\displaystyle p/q} by applying the power rule for integer exponents using the chain rule, as shown in the next step.
The multiplication of two odd numbers is always odd, but the multiplication of an even number with any number is always even. An odd number raised to a power is always odd and an even number raised to power is always even, so for example x n has the same parity as x. Consider any primitive solution (x, y, z) to the equation x n + y n = z n.
Ads
related to: powers of exponents test printable pdf free