Search results
Results from the WOW.Com Content Network
The heat sink thermal resistance model consists of two resistances, namely the resistance in the heat sink base, , and the resistance in the fins, . The heat sink base thermal resistance, , can be written as follows if the source is a uniformly applied the heat sink base. If it is not, then the base resistance is primarily spreading resistance:
The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
The Biot number is the ratio of the thermal resistance for conduction inside a body to the resistance for convection at the surface of the body. This ratio indicates whether the temperature inside a body varies significantly in space when the body is heated or cooled over time by a heat flux at its surface.
Variable conductance heat pipes (VCHPs), which use a non-condensable gas (NCG) to change the heat pipe effective thermal conductivity as power or the heat sink conditions change; Pressure controlled heat pipes (PCHPs), which are a VCHP where the volume of the reservoir, or the NCG mass can be changed, to give more precise temperature control
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Gravity causes denser parts of the fluid to sink, which is called convection. Lord Rayleigh studied [2] the case of Rayleigh-Bénard convection. [6] When the Rayleigh number, Ra, is below a critical value for a fluid, there is no flow and heat transfer is purely by conduction; when it exceeds that value, heat is transferred by natural ...
Thermal contact resistance is significant and may dominate for good heat conductors such as metals but can be neglected for poor heat conductors such as insulators. [2] Thermal contact conductance is an important factor in a variety of applications, largely because many physical systems contain a mechanical combination of two materials.