Search results
Results from the WOW.Com Content Network
For this reason, induction coils were called spark coils. An induction coil is traditionally characterised by the length of spark it can produce; a '4 inch' (10 cm) induction coil could produce a 4 inch spark. Until the development of the cathode ray oscilloscope, this was the most reliable measurement of peak voltage of such asymmetric ...
The ignition coil is a transformer. The primary winding (called the low-tension winding in early texts) is connected to the battery voltage when the points are closed. Due to the inductance of the coil, the current in this circuit builds gradually. This current creates a magnetic field in the coil, which stores a quantity of energy.
The blue trace, i 1 is the current in the coil's primary winding. It is broken periodically by a vibrating contact in the primary circuit called an interrupter. The changes in current create a changing magnetic flux in the coil which induces a high voltage in the secondary coil, v 2 shown in red. The voltage induced in the secondary is ...
The entire ignition system, coil and points, are under the magnetized flywheel. Another sort of ignition system commonly used on small off-road motorcycles in the 1960s and 1970s was called Energy Transfer. A coil under the flywheel generated a strong DC current pulse as the flywheel magnet moved over it.
A motor capacitor [1] [2] is an electrical capacitor that alters the current to one or more windings of a single-phase alternating-current induction motor to create a rotating magnetic field. [ citation needed ] There are two common types of motor capacitors, start capacitor and run capacitor (including a dual run capacitor ).
As batteries became more common in cars (due to the increased usage of electric starter motors), magneto systems were replaced by systems using an induction coil.The 1886 Benz Patent-Motorwagen and the 1908 Ford Model T used a trembler coil ignition system, whereby the trembler interrupted the current through the coil and caused a rapid series of sparks during each firing.
The rotating magnetic field is the key principle in the operation of induction machines.The induction motor consists of a stator and rotor.In the stator a group of fixed windings are so arranged that a two phase current, for example, produces a magnetic field which rotates at an angular velocity determined by the frequency of the alternating current.
The circle diagram can be drawn for alternators, synchronous motors, transformers, induction motors. The Heyland diagram is an approximate representation of a circle diagram applied to induction motors, which assumes that stator input voltage, rotor resistance and rotor reactance are constant and stator resistance and core loss are zero.