Search results
Results from the WOW.Com Content Network
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
y = x 3 for values of 1 ≤ x ≤ 25.. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8.
Indeed, if the cubic has three irrational but real solutions, we have the casus irreducibilis, in which all three real solutions are written in terms of cube roots of complex numbers. On the other hand, consider the equation + =, which has the rational solutions 1, 2, and −3.
If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative. On the other hand, r 1 – r 2 and r 1 – r 3 are complex conjugates, and their product is real and positive. [ 23 ]
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
The principal cube root is the cube root with the largest real part. In the case of negative real numbers, the largest real part is shared by the two nonreal cube roots, and the principal cube root is the one with positive imaginary part. So, for negative real numbers, the real cube root is not the principal cube root. For positive real numbers ...
The products of small numbers may be calculated by using the squares of integers; for example, to calculate 13 × 17, one can remark 15 is the mean of the two factors, and think of it as (15 − 2) × (15 + 2), i.e. 15 2 − 2 2.
Doubling the cube: PB/PA = cube root of 2. The classical problem of doubling the cube can be solved using origami. This construction is due to Peter Messer: [38] A square of paper is first creased into three equal strips as shown in the diagram. Then the bottom edge is positioned so the corner point P is on the top edge and the crease mark on ...