Search results
Results from the WOW.Com Content Network
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a×b=a×c, then the multiplicative term a can be canceled out if a≠0, resulting in the equivalent expression b=c; this is equivalent to dividing through by a.
In mathematics, the method of clearing denominators, also called clearing fractions, is a technique for simplifying an equation equating two expressions that each are a sum of rational expressions – which includes simple fractions.
The article by Boas analyzes two-digit cases in bases other than base 10, e.g., 32 / 13 = 2 / 1 and its inverse are the only solutions in base 4 with two digits. [2]An example of anomalous cancellation with more than two digits is 165 / 462 = 15 / 42 , and an example with different numbers of digits is 98 / 392 = 8 / 32 .
Cancel the common denominator bd = db, leaving =. Each step in these procedures is based on a single, fundamental property of equations. Cross-multiplication is a shortcut, an easily understandable procedure that can be taught to students.
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence (). As a consequence the partial sums of the series only consists of two terms of ( a n ) {\displaystyle (a_{n})} after cancellation.
As can be seen, when the dimensional units appearing in the numerator and denominator of the equation's right hand side are cancelled out, both sides of the equation have the same dimensional units. Dimensional analysis can be used as a tool to construct equations that relate non-associated physico-chemical properties.
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
This works because the cancellation in the numerator ( (+)) = ^ + (^) and the cancellation in the denominator ^ = (+) counteract each other; the function = (+) / is well-enough conditioned near zero that (^) gives a good approximation to (), and thus (^) gives a good approximation to = (+).