enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    Consider a gas in cylinder with a free floating piston resting on top of a volume of gas V 1 at a temperature T 1. If the gas is heated so that the temperature of the gas goes up to T 2 while the piston is allowed to rise to V 2 as in Figure 1, then the pressure is kept the same in this process due to the free floating piston being allowed to ...

  3. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    This transfer of momentum can be thought of as a frictional force between layers of flow. Since the momentum transfer is caused by free motion of gas molecules between collisions, increasing thermal agitation of the molecules results in a larger viscosity. Hence, gaseous viscosity increases with temperature.

  4. Phase diagram - Wikipedia

    en.wikipedia.org/wiki/Phase_diagram

    It is possible to envision three-dimensional (3D) graphs showing three thermodynamic quantities. [12] [13] For example, for a single component, a 3D Cartesian coordinate type graph can show temperature (T) on one axis, pressure (p) on a second axis, and specific volume (v) on a third. Such a 3D graph is sometimes called a p–v–T diagram. The ...

  5. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    The mathematical similarities between the expressions for shear viscocity, thermal conductivity and diffusion coefficient of the ideal (dilute) gas is not a coincidence; It is a direct result of the Onsager reciprocal relations (i.e. the detailed balance of the reversible dynamics of the particles), when applied to the convection (matter flow ...

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  7. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 °C, a dewpoint of 9 °C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%).

  8. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    This is a derivation to obtain an expression for for an ideal gas. An ideal gas has the equation of state: = where P = pressure V = volume n = number of moles R = universal gas constant T = temperature. The ideal gas equation of state can be arranged to give:

  9. List of thermal conductivities - Wikipedia

    en.wikipedia.org/wiki/List_of_thermal_conductivities

    Eventually you can find out from his graph that the (1) at the end is not part of his formula and instead he is citing his graph. Air and thin air and high tech vacuums, microstructure Formula Values d=1 millimeter Standard Atmospheric Pressure 0.0209 0.0235 0.0260 0.1 atmosphere 0.0209 0.0235 0.0259 0.01 atmospheres 0.0205 0.0230 0.0254 0.001 ...