Search results
Results from the WOW.Com Content Network
The preparation of EtBr stands as a model for the synthesis of bromoalkanes in general. It is usually prepared by the addition of hydrogen bromide to ethene: . H 2 C=CH 2 + HBr → H 3 C-CH 2 Br
The reaction is acid catalyzed and the reaction type is nucleophilic addition of the amine to the carbonyl compound followed by transfer of a proton from nitrogen to oxygen to a stable hemiaminal or carbinolamine. With primary amines, water is lost in an elimination reaction to an imine. With aryl amines, especially stable Schiff bases are formed.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
As an example, electrolysis of acetic acid yields ethane and carbon dioxide: CH 3 COOH → CH 3 COO − → CH 3 COO· → CH 3 · + CO 2 2CH 3 · → CH 3 CH 3. Another example is the synthesis of 2,7-dimethyl-2,7-dinitrooctane from 4-methyl-4-nitrovaleric acid: [3] The Kolbe reaction has also been occasionally used in cross-coupling reactions.
Reactions between aldimines and α-methylene carbonyls are also considered Mannich reactions because these imines form between amines and aldehydes. The reaction is named after Carl Mannich. [2] [3] Scheme 1 – Ammonia or an amine reacts with formaldehyde and an alpha acidic proton of a carbonyl compound to a beta amino carbonyl compound.
Deprotonation can be an important step in a chemical reaction. Acid–base reactions typically occur faster than any other step which may determine the product of a reaction. The conjugate base is more electron-rich than the molecule which can alter the reactivity of the molecule.
The reaction mechanism is not exactly known; two proposals are presented here. One possibility is at first an aldol condensation, starting from the enol form of the pyruvic acid (1) and the aldehyde, forming an β,γ-unsaturated α-ketocarboxylic acid (2). This is followed by a Michael addition with aniline to form an aniline derivative (3).