enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bochner integral - Wikipedia

    en.wikipedia.org/wiki/Bochner_integral

    Let (,,) be a measure space, and be a Banach space.The Bochner integral of a function : is defined in much the same way as the Lebesgue integral. First, define a simple function to be any finite sum of the form = = (), where the are disjoint members of the -algebra , the are distinct elements of , and χ E is the characteristic function of .

  3. Banach space - Wikipedia

    en.wikipedia.org/wiki/Banach_space

    In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

  4. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .

  5. List of Banach spaces - Wikipedia

    en.wikipedia.org/wiki/List_of_Banach_spaces

    Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]

  6. Banach algebra - Wikipedia

    en.wikipedia.org/wiki/Banach_algebra

    In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm.

  7. Square-integrable function - Wikipedia

    en.wikipedia.org/wiki/Square-integrable_function

    It can be shown that square integrable functions form a complete metric space under the metric induced by the inner product defined above. A complete metric space is also called a Cauchy space, because sequences in such metric spaces converge if and only if they are Cauchy. A space that is complete under the metric induced by a norm is a Banach ...

  8. Bochner space - Wikipedia

    en.wikipedia.org/wiki/Bochner_space

    Bochner spaces are often used in the functional analysis approach to the study of partial differential equations that depend on time, e.g. the heat equation: if the temperature (,) is a scalar function of time and space, one can write (()) ():= (,) to make a family () (parametrized by time) of functions of space, possibly in some Bochner space.

  9. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    The direct method may often be applied with success when the space is a subset of a separable reflexive Banach space. In this case the sequential Banach–Alaoglu theorem implies that any bounded sequence ( u n ) {\displaystyle (u_{n})} in V {\displaystyle V} has a subsequence that converges to some u 0 {\displaystyle u_{0}} in W {\displaystyle ...