Search results
Results from the WOW.Com Content Network
The XML Schema Definition language provides a set of 19 primitive data types: [17] string: a string, a sequence of Unicode code points; boolean: a Boolean; decimal: a number represented with decimal notation; float and double: floating-point numbers; duration, dateTime, time, date, gYearMonth, gYear, gMonthDay, gDay, and gMonth: Calendar dates ...
Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ 2 × 10 308. The number of normal floating-point numbers in a system (B, P, L, U) where B is the base of the system, P is the precision of the significand (in base B),
A union type definition will specify which of a number of permitted subtypes may be stored in its instances, e.g. "float or long integer". In contrast with a record, which could be defined to contain a float and an integer, a union may only contain one subtype at a time.
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
A decimal data type could be implemented as either a floating-point number or as a fixed-point number. In the fixed-point case, the denominator would be set to a fixed power of ten. In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied.
A simple method to add floating-point numbers is to first represent them with the same exponent. In the example below, the second number is shifted right by 3 digits. We proceed with the usual addition method: The following example is decimal, which simply means the base is 10. 123456.7 = 1.234567 × 10 5 101.7654 = 1.017654 × 10 2 = 0. ...
However, on modern standard computers (i.e., implementing IEEE 754), one may safely assume that the endianness is the same for floating-point numbers as for integers, making the conversion straightforward regardless of data type. Small embedded systems using special floating-point formats may be another matter, however.
Numbers are represented in binary as IEEE 754 floating point doubles. Although this format provides an accuracy of nearly 16 significant digits, it cannot always exactly represent real numbers, including fractions. This becomes an issue when comparing or formatting numbers. For example: