Search results
Results from the WOW.Com Content Network
Common quantum logic gates by name (including abbreviation), circuit form(s) and the corresponding unitary matrices. In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits.
In gate-based quantum computing, various sets of quantum logic gates are commonly used to express quantum operations. The following tables list several unitary quantum logic gates, together with their common name, how they are represented, and some of their properties.
Other examples of quantum logic gates derived from classical ones are the Toffoli gate and the Fredkin gate. However, the Hilbert-space structure of the qubits permits many quantum gates that are not induced by classical ones. For example, a relative phase shift is a 1 qubit gate given by multiplication by the phase shift operator:
The classical analog of the CNOT gate is a reversible XOR gate. How the CNOT gate can be used (with Hadamard gates) in a computation.. In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer.
Modern philosophers reject quantum logic as a basis for reasoning, because it lacks a material conditional; a common alternative is the system of linear logic, of which quantum logic is a fragment. Mathematically, quantum logic is formulated by weakening the distributive law for a Boolean algebra, resulting in an orthocomplemented lattice.
More recent motivation comes from quantum computing. In quantum mechanics the quantum state can evolve in two ways: by Schrödinger's equation (unitary transformations), or by their collapse. Logic operations for quantum computers, of which the Toffoli gate is an example, are unitary transformations and therefore evolve reversibly. [2]
Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations. A physical qubit is a physical device that behaves as a two-state quantum system, used as a component of a computer system.
Aside from the motivation of energy-efficient computation, reversible logic gates offered practical improvements of bit-manipulation transforms in cryptography and computer graphics. Since the 1980s, reversible circuits have attracted interest as components of quantum algorithms , and more recently in photonic and nano-computing technologies ...