Search results
Results from the WOW.Com Content Network
The examples "is greater than", "is at least as great as", and "is equal to" are transitive relations on various sets. As are the set of real numbers or the set of natural numbers: whenever x > y and y > z, then also x > z whenever x ≥ y and y ≥ z, then also x ≥ z whenever x = y and y = z, then also x = z. More examples of transitive ...
Transitive for all x, y, z ∈ X, if xRy and yRz then xRz. A transitive relation is irreflexive if and only if it is asymmetric. [13] For example, "is ancestor of" is a transitive relation, while "is parent of" is not. Connected for all x, y ∈ X, if x ≠ y then xRy or yRx.
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion.
A relation R on a set X is transitive if, for all x, y, z in X, whenever x R y and y R z then x R z. Examples of transitive relations include the equality relation on any set, the "less than or equal" relation on any linearly ordered set, and the relation "x was born before y" on the set of all people. Symbolically, this can be denoted as: if x ...
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
[note 1] A subset X of S is said to be closed under these methods, if, when all input elements are in X, then all possible results are also in X. Sometimes, one may also say that X has the closure property. The main property of closed sets, which results immediately from the definition, is that every intersection of closed sets is a closed set.
The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...