Search results
Results from the WOW.Com Content Network
It follows that all vertices are congruent, ... Skilling's figure with overlapping edges. ... 2: Yes: 7: 20{3}+12 ...
v3.3.3.3.5 It is topologically related to a polyhedra sequence defined by the face configuration V4.6.2n . This group is special for having all even number of edges per vertex and form bisecting planes through the polyhedra and infinite lines in the plane, and continuing into the hyperbolic plane for any n ≥ 7.
Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely √ φ 6 +2 = √ 8φ+7 for edge length 2. For unit edge length, R must be halved, giving R = √ 8φ+7 / 2 = √ 11+4 √ 5 / 2 ≈ 2.233.
The convex regular dodecahedron also has three stellations, all of which are regular star dodecahedra.They form three of the four Kepler–Poinsot polyhedra.They are the small stellated dodecahedron {5/2, 5}, the great dodecahedron {5, 5/2}, and the great stellated dodecahedron {5/2, 3}.
3D model of a rhombic dodecahedron. In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces.It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron.
Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± 1 / φ ) and cyclic permutations of these coordinates.
The number of vertices, edges, and faces of GP(m,n) can be computed from m and n, with T = m 2 + mn + n 2 = (m + n) 2 − mn, depending on one of three symmetry systems: [1] The number of non-hexagonal faces can be determined using the Euler characteristic, as demonstrated here.
The vertices of Jessen's icosahedron may be chosen to have as their coordinates the twelve triplets given by the cyclic permutations of the coordinates (,,). [1] With this coordinate representation, the short edges of the icosahedron (the ones with convex angles) have length , and the long (reflex) edges have length .