Search results
Results from the WOW.Com Content Network
In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root.
For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.
Multiplicity (informatics), a type of relationship in class diagrams for Unified Modeling Language used in software engineering; Multiplicity (mathematics), the number of times an element is repeated in a multiset; Multiplicity (software), a software application which allows a user to control two or more computers from one mouse and keyboard
Mathematicians discovered a new 13-sided shape that can do remarkable things, like tile a plane without ever repeating. Skip to main content. 24/7 Help. For premium support please call: 800-290 ...
Multiplicity (French: multiplicité) is a philosophical concept developed by Edmund Husserl and Henri Bergson from Riemann's description of the mathematical concept. [1] In his essay The Idea of Duration, Bergson discusses multiplicity in light of the notion of unity. Whereas a unity refers to a given thing in as far as it is a whole ...
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
For example, a square is fat because its length and width are identical. A 2-by-1 rectangle is thinner than a square, but it is fat relative to a 10-by-1 rectangle. Similarly, a circle is fatter than a 1-by-10 ellipse and an equilateral triangle is fatter than a very obtuse triangle. Fat objects are especially important in computational geometry.
The real numbers (extended by +∞) with the operations of minimum and addition form a semiring, called the min tropical semiring, [e] and a valuation v is almost a semiring homomorphism from K to the tropical semiring, except that the homomorphism property can fail when two elements with the same valuation are added together.