Search results
Results from the WOW.Com Content Network
The main difference between System V shared memory (shmem) and memory mapped I/O (mmap) is that System V shared memory is persistent: unless explicitly removed by a process, it is kept in memory and remains available until the system is shut down. mmap'd memory is not persistent between application executions (unless it is backed by a file).
It is the fastest and most flexible cache organization that uses an associative memory. The associative memory stores both the address and content of the memory word. [further explanation needed] In the boot process of some computers, a memory map may be passed on from the firmware to instruct an operating system kernel about memory layout. It ...
Memory-mapped I/O is preferred in IA-32 and x86-64 based architectures because the instructions that perform port-based I/O are limited to one register: EAX, AX, and AL are the only registers that data can be moved into or out of, and either a byte-sized immediate value in the instruction or a value in register DX determines which port is the source or destination port of the transfer.
Memory-mapped I/O, an alternative to port I/O; a communication between CPU and peripheral device using the same instructions, and same bus, as between CPU and memory; Virtual memory, technique which gives an application program the impression that it has contiguous working memory, while in fact it is physically fragmented and may even overflow ...
A memory-mapped file is a segment of virtual memory [1] that has been assigned a direct byte-for-byte correlation with some portion of a file or file-like resource. This resource is typically a file that is physically present on disk, but can also be a device, shared memory object, or other resource that an operating system can reference through a file descriptor.
The operating system must manage the bank-switching operation to ensure that program execution can continue when part of memory is not accessible to the processor. Bank switching is a technique used in computer design to increase the amount of usable memory beyond the amount directly addressable by the processor [1] instructions.
In computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage.These patterns differ in the level of locality of reference and drastically affect cache performance, [1] and also have implications for the approach to parallelism [2] [3] and distribution of workload in shared memory systems. [4]
e820 is shorthand for the facility by which the BIOS of an x86-based computer system reports the memory map to the operating system or boot loader. [1] It is accessed via the int 15h call, by setting the AX register to value E820 in hexadecimal. It reports which memory address ranges are usable and which are reserved for use by the BIOS. [2]