enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cockcroft–Walton generator - Wikipedia

    en.wikipedia.org/wiki/Cockcroft–Walton_generator

    The Cockcroft–Walton (CW) generator, or multiplier, is an electric circuit that generates a high DC voltage from a low-voltage AC. [1] It was named after the British and Irish physicists John Douglas Cockcroft and Ernest Thomas Sinton Walton, who in 1932 used this circuit design to power their particle accelerator, performing the first artificial nuclear disintegration in history. [2]

  3. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.

  4. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    Lehmer random number generator. The Lehmer random number generator[1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is.

  5. IUPAC numerical multiplier - Wikipedia

    en.wikipedia.org/wiki/IUPAC_numerical_multiplier

    IUPAC numerical multiplier. The numerical multiplier (or multiplying affix) in IUPAC nomenclature indicates how many particular atoms or functional groups are attached at a particular point in a molecule. The affixes are derived from both Latin and Greek.

  6. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    In binary encoding each long number is multiplied by one digit (either 0 or 1), and that is much easier than in decimal, as the product by 0 or 1 is just 0 or the same number. Therefore, the multiplication of two binary numbers comes down to calculating partial products (which are 0 or the first number), shifting them left, and then adding them ...

  7. Voltage multiplier - Wikipedia

    en.wikipedia.org/wiki/Voltage_multiplier

    An ideal 4-stage Dickson multiplier (5× multiplier) with an input of 1.5 V would have an output of 7.5 V. However, a diode-wired MOSFET 4-stage multiplier might only have an output of 2 V. Adding parallel MOSFETs in the linear region improves this to around 4 V. More complex circuits still can achieve an output much closer to the ideal case. [7]

  8. Multiply-with-carry pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Multiply-with-carry...

    Thus, a multiply-with-carry generator is a Lehmer generator with modulus p and multiplier b−1 (mod p). This is the same as a generator with multiplier b, but producing output in reverse order, which does not affect the quality of the resultant pseudorandom numbers.

  9. Dadda multiplier - Wikipedia

    en.wikipedia.org/wiki/Dadda_multiplier

    The Dadda multiplier is a hardware binary multiplier design invented by computer scientist Luigi Dadda in 1965. [1] It uses a selection of full and half adders to sum the partial products in stages (the Dadda tree or Dadda reduction) until two numbers are left. The design is similar to the Wallace multiplier, but the different reduction tree ...