enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relative permittivity - Wikipedia

    en.wikipedia.org/wiki/Relative_permittivity

    Relative permittivity is the factor by which the electric field between the charges is decreased relative to vacuum. Likewise, relative permittivity is the ratio of the capacitance of a capacitor using that material as a dielectric, compared with a similar capacitor that has vacuum as its dielectric. Relative permittivity is also commonly known ...

  3. Clausius–Mossotti relation - Wikipedia

    en.wikipedia.org/wiki/Clausius–Mossotti_relation

    In electromagnetism, the Clausius–Mossotti relation, named for O. F. Mossotti and Rudolf Clausius, expresses the dielectric constant (relative permittivity, εr) of a material in terms of the atomic polarizability, α, of the material's constituent atoms and/or molecules, or a homogeneous mixture thereof. It is equivalent to the Lorentz ...

  4. Polarizability - Wikipedia

    en.wikipedia.org/wiki/Polarizability

    Polarizability is responsible for a material's dielectric constant and, at high (optical) frequencies, its refractive index. The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1]

  5. Permittivity - Wikipedia

    en.wikipedia.org/wiki/Permittivity

    Permittivity as a function of frequency can take on real or complex values. In SI units, permittivity is measured in farads per meter (F/m or A 2 ·s 4 ·kg −1 ·m −3). The displacement field D is measured in units of coulombs per square meter (C/m 2), while the electric field E is measured in volts per meter (V/m).

  6. Electric dipole moment - Wikipedia

    en.wikipedia.org/wiki/Electric_dipole_moment

    Therefore, the dielectric constant (and the conductivity) has contributions from both terms. This approach can be generalized to compute the frequency dependent dielectric function. [38] It is possible to calculate dipole moments from electronic structure theory, either as a response to constant electric fields or from the density matrix. [39]

  7. Dielectric - Wikipedia

    en.wikipedia.org/wiki/Dielectric

    A dielectric resonator oscillator (DRO) is an electronic component that exhibits resonance of the polarisation response for a narrow range of frequencies, generally in the microwave band. It consists of a "puck" of ceramic that has a large dielectric constant and a low dissipation factor. Such resonators are often used to provide a frequency ...

  8. Equipartition theorem - Wikipedia

    en.wikipedia.org/wiki/Equipartition_theorem

    It follows that the heat capacity of the gas is ⁠ 3 / 2 ⁠ N k B and hence, in particular, the heat capacity of a mole of such gas particles is ⁠ 3 / 2 ⁠ N A k B = ⁠ 3 / 2 ⁠ R, where N A is the Avogadro constant and R is the gas constant. Since R ≈ 2 cal/(mol·K), equipartition predicts that the molar heat capacity of an ideal gas ...

  9. Curie temperature - Wikipedia

    en.wikipedia.org/wiki/Curie_temperature

    The angular momentum of an electron is either + ⁠ ħ / 2 ⁠ or − ⁠ ħ / 2 ⁠ due to it having a spin of ⁠ 1 / 2 ⁠, which gives a specific size of magnetic moment to the electron; the Bohr magneton. [40] Electrons orbiting around the nucleus in a current loop create a magnetic field which depends on the Bohr magneton and magnetic ...