Search results
Results from the WOW.Com Content Network
An extended context-free grammar (or regular right part grammar) is one in which the right-hand side of the production rules is allowed to be a regular expression over the grammar's terminals and nonterminals. Extended context-free grammars describe exactly the context-free languages.
In formal language theory, a context-free grammar is in Greibach normal form (GNF) if the right-hand sides of all production rules start with a terminal symbol, optionally followed by some variables. A non-strict form allows one exception to this format restriction for allowing the empty word (epsilon, ε) to be a member of the described language.
To convert a grammar to Chomsky normal form, a sequence of simple transformations is applied in a certain order; this is described in most textbooks on automata theory. [4]: 87–94 [5] [6] [7] The presentation here follows Hopcroft, Ullman (1979), but is adapted to use the transformation names from Lange, Leiß (2009).
A parse tree or parsing tree [1] (also known as a derivation tree or concrete syntax tree) is an ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar. The term parse tree itself is used primarily in computational linguistics; in theoretical syntax, the term syntax tree is more common.
The rules of Context-free grammars are purely local, however, and therefore cannot handle questions that require non-local analysis such as "Does a declaration exist for every variable that is used in a function?". To do so technically would require a more sophisticated grammar, like a Chomsky Type 1 grammar, also termed a context-sensitive ...
Ogden's lemma is often stated in the following form, which can be obtained by "forgetting about" the grammar, and concentrating on the language itself: If a language L is context-free, then there exists some number (where p may or may not be a pumping length) such that for any string s of length at least p in L and every way of "marking" p or more of the positions in s, s can be written as
Synchronous context-free grammars (SynCFG or SCFG; not to be confused with stochastic CFGs) are a type of formal grammar designed for use in transfer-based machine translation. Rules in these grammars apply to two languages at the same time, capturing grammatical structures that are each other's translations.
The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing.Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct.