Search results
Results from the WOW.Com Content Network
Optical systems can be folded using plane mirrors; the system is still considered to be rotationally symmetric if it possesses rotational symmetry when unfolded. Any point on the optical axis (in any space) is an axial point. Rotational symmetry greatly simplifies the analysis of optical systems, which otherwise must be analyzed in three ...
Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity.
The optical properties of a material define how it interacts with light. The optical properties of matter are studied in optical physics (a subfield of optics ) and applied in materials science . The optical properties of matter include:
Recording optical rotation with a polarimeter: The plane of polarisation of plane polarised light (4) rotates (6) as it passes through an optically active sample (5). This angle is determined with a rotatable polarizing filter (7). In chemistry, specific rotation ([α]) is a property of a chiral chemical compound.
An object that cannot be superimposed on its mirror image is said to be chiral, and optical rotatory dispersion and circular dichroism are known as chiroptical properties. Most biological molecules have one or more chiral centers and undergo enzyme-catalyzed transformations that either maintain or invert the chirality at one or more of these ...
Spectrometers may operate over a wide range of non-optical wavelengths, from gamma rays and X-rays into the far infrared. If the instrument is designed to measure the spectrum on an absolute scale rather than a relative one, then it is typically called a spectrophotometer. The majority of spectrophotometers are used in spectral regions near the ...
Optical engineering is the field of engineering encompassing the physical phenomena and technologies associated with the generation, transmission, manipulation, detection, and utilization of light. [2] Optical engineers use the science of optics to solve problems and to design and build devices that make light do something useful. [3]
The unique optical properties of the atmosphere cause a wide range of spectacular optical phenomena. The blue colour of the sky is a direct result of Rayleigh scattering which redirects higher frequency (blue) sunlight back into the field of view of the observer.