Search results
Results from the WOW.Com Content Network
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r, then the L-function L(E, s) associated with it vanishes to order r at s = 1.
Partial chronology of FDTD techniques and applications for Maxwell's equations. [5]year event 1928: Courant, Friedrichs, and Lewy (CFL) publish seminal paper with the discovery of conditional stability of explicit time-dependent finite difference schemes, as well as the classic FD scheme for solving second-order wave equation in 1-D and 2-D. [6]
It was originally known as "HECKE and Manin". After a short while it was renamed SAGE, which stands for ‘’Software of Algebra and Geometry Experimentation’’. Sage 0.1 was released in 2005 and almost a year later Sage 1.0 was released. It already consisted of Pari, GAP, Singular and Maxima with an interface that rivals that of Mathematica.
1 Basic concepts. 2 History. 3 Technical ... Examples of discretization strategies are the h-version, p-version, ... It was developed by combining mesh-free methods ...
A general finite impulse response filter with n stages, each with an independent delay, d i, and amplification gain, a i.. In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal.
The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.
The basic problem in numerical integration is to compute an approximate solution to a definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} to a given degree of accuracy.
Time-scale calculus was introduced in 1988 by the German mathematician Stefan Hilger. [1] However, similar ideas have been used before and go back at least to the introduction of the Riemann–Stieltjes integral , which unifies sums and integrals.