Search results
Results from the WOW.Com Content Network
Conversely, given a solution to the SubsetSumZero instance, it must contain the −T (since all integers in S are positive), so to get a sum of zero, it must also contain a subset of S with a sum of +T, which is a solution of the SubsetSumPositive instance. The input integers are positive, and T = sum(S)/2.
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
Maximum subarray problems arise in many fields, such as genomic sequence analysis and computer vision.. Genomic sequence analysis employs maximum subarray algorithms to identify important biological segments of protein sequences that have unusual properties, by assigning scores to points within the sequence that are positive when a motif to be recognized is present, and negative when it is not ...
In computational complexity theory, the 3SUM problem asks if a given set of real numbers contains three elements that sum to zero. A generalized version, k-SUM, asks the same question on k elements, rather than simply 3. 3SUM can be easily solved in () time, and matching (⌈ / ⌉) lower bounds are known in some specialized models of computation (Erickson 1999).
Short integer solution (SIS) and ring-SIS problems are two average-case problems that are used in lattice-based cryptography constructions. Lattice-based cryptography began in 1996 from a seminal work by Miklós Ajtai [ 1 ] who presented a family of one-way functions based on SIS problem.
Latino Republican lawmakers who approve of President Donald Trump are toeing a fine line between supporting his immigration crackdown and trying to convince their immigrant constituents that they ...
Although the three-peg version has a simple recursive solution long been known, the optimal solution for the Tower of Hanoi problem with four pegs (called Reve's puzzle) was not verified until 2014, by Bousch. [20] However, in case of four or more pegs, the Frame–Stewart algorithm is known without proof of optimality since 1941. [21]
The partition problem is NP hard. This can be proved by reduction from the subset sum problem. [6] An instance of SubsetSum consists of a set S of positive integers and a target sum T; the goal is to decide if there is a subset of S with sum exactly T.