Search results
Results from the WOW.Com Content Network
For materials containing no more than 1.0 percent hydrogen peroxide, the available oxygen, as calculated using the equation in paragraph (a)(4)(ii) of this section, is not more than 1.0 percent, or For materials containing more than 1.0 percent but not more than 7.0 percent hydrogen peroxide, the available oxygen content (O a ) is not more than ...
Clear Care, the current evolution of the old AOsept system, is said to count for more than 80 percent of the hydrogen peroxide systems sold in the US. [3] Clear Care contains a poloxamine derivative surfactant that helps loosen debris and deposits via a bubbling action and has a platinum disk that neutralizes the solution and is good for up to ...
A typical mixture is 3 parts of concentrated sulfuric acid and 1 part of 30 wt. % hydrogen peroxide solution; [1] other protocols may use a 4:1 or even 7:1 mixture. A closely related mixture, sometimes called "base piranha", is a 5:1:1 mixture of water, ammonia solution ( NH 4 OH , or NH 3 (aq) ), and 30% hydrogen peroxide.
Hydrogen peroxide is a chemical compound with the formula H 2 O 2.In its pure form, it is a very pale blue [5] liquid that is slightly more viscous than water.It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%–6% by weight) in water for consumer use and in higher concentrations for industrial use.
For example, 98% hydrogen peroxide is more stable than 70% hydrogen peroxide. Water acts as a contaminant, and the higher the water concentration the less stable the peroxide is. The storability of peroxide is dependent on the surface-to-volume ratio of the materials the fluid is in contact with. To increase storability, the ratio should be ...
Fenton's reagent is a solution of hydrogen peroxide (H 2 O 2) and an iron catalyst (typically iron(II) sulfate, FeSO 4). [1] It is used to oxidize contaminants or waste water as part of an advanced oxidation process. Fenton's reagent can be used to destroy organic compounds such as trichloroethylene and tetrachloroethylene (perchloroethylene).
For the preparation of the complex, urea is dissolved in 30% hydrogen peroxide (molar ratio 2:3) at temperatures below 60 °C. upon cooling this solution, hydrogen peroxide–urea precipitates out in the form of small platelets. [2] Akin to water of crystallization, hydrogen peroxide cocrystallizes with urea with the stoichiometry of 1:1.
The reaction, using H 2 O 2 for the formation of ·OH, is carried out in an acidic medium (2.5-4.5 pH) [9] and a low temperature (30 °C - 50 °C), [10] in a safe and efficient way, using optimized catalyst and hydrogen peroxide formulations.