Search results
Results from the WOW.Com Content Network
A specific property is the intensive property obtained by dividing an extensive property of a system by its mass. For example, heat capacity is an extensive property of a system. Dividing heat capacity, , by the mass of the system gives the specific heat capacity, , which is an intensive property. When the extensive property is represented by ...
Density is an intensive property in that increasing the amount of a substance does not increase its density; rather it increases its mass. Other conceptually comparable quantities or ratios include specific density, relative density (specific gravity), and specific weight.
An intensive property does not depend on the size or extent of the system, nor on the amount of matter in the object, while an extensive property shows an additive relationship. These classifications are in general only valid in cases when smaller subdivisions of the sample do not interact in some physical or chemical process when combined.
An extrinsic property is not essential or inherent to the subject that is being characterized. For example, mass is an intrinsic property of any physical object , whereas weight is an extrinsic property that depends on the strength of the gravitational field in which the object is placed.
Either the definition of 'extensive property' or the discussion on combined extensive properties is over-broad. Also, " Dividing one type of extensive quantity by a different type of extensive quantity will in general give an intensive quantity. For example, mass (extensive) divided by volume (extensive) gives density (intensive)."
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
A closely related property of a substance is the heat capacity per mole of atoms, or atom-molar heat capacity, in which the heat capacity of the sample is divided by the number of moles of atoms instead of moles of molecules. So, for example, the atom-molar heat capacity of water is 1/3 of its molar heat capacity, namely 25.3 J⋅K −1 ⋅mol ...
The characteristic properties of a substance are always the same whether the sample being observed is large or small. Thus, conversely, if the property of a substance changes as the sample size changes, that property is not a characteristic property. Examples of physical properties that aren't characteristic properties are mass and volume.