Search results
Results from the WOW.Com Content Network
If a mechanical system has no losses, then the input power must equal the output power. This provides a simple formula for the mechanical advantage of the system. Let the input power to a device be a force F A acting on a point that moves with velocity v A and the output power be a force F B acts on a point that moves with velocity v B.
Efficiency of power plants, world total, 2008. Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat. The resulting value, η (eta), ranges ...
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
The ideal mechanical advantage is the ratio of the force out of the machine (load) to the force into the machine (effort), or =. Applying the constant power relationship yields a formula for this ideal mechanical advantage in terms of the speed ratio:
In mechanical engineering, mechanical efficiency is a dimensionless ratio that measures the efficiency of a mechanism or machine in transforming the power input to the device to power output. A machine is a mechanical linkage in which force is applied at one point, and the force does work moving a load at another point.
The input power provided by the cyclist is equal to the product of angular speed (i.e. the number of pedal revolutions per minute times 2π) and the torque at the spindle of the bicycle's crankset. The bicycle's drivetrain transmits the input power to the road wheel , which in turn conveys the received power to the road as the output power of ...
is the mechanical torque supplied by the prime mover in N-m; is the electrical torque output of the alternator in N-m; Neglecting losses, the difference between the mechanical and electrical torque gives the net accelerating torque . In the steady state, the electrical torque is equal to the mechanical torque and hence the accelerating power is ...
The power coefficient [9] C P (= P/P wind) is the dimensionless ratio of the extractable power P to the kinetic power P wind available in the undistributed stream. [ citation needed ] It has a maximum value C P max = 16/27 = 0.593 (or 59.3%; however, coefficients of performance are usually expressed as a decimal, not a percentage).