Search results
Results from the WOW.Com Content Network
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
In decimal numbers greater than 1 (such as 3.75), the fractional part of the number is expressed by the digits to the right of the separator (with a value of 0.75 in this case). 3.75 can be written either as an improper fraction, 375 / 100 , or as a mixed number, 3 + 75 / 100 .
An easy mnemonic helps memorize this fraction by writing down each of the first three odd numbers twice: 1 1 3 3 5 5, then dividing the decimal number represented by the last 3 digits by the decimal number given by the first three digits: 1 1 3 分之(fēn zhī) 3 5 5. (In Eastern Asia, fractions are read by stating the denominator first ...
Fractions such as 1 ⁄ 3 are displayed as decimal approximations, for example rounded to 0.33333333. Also, some fractions (such as 1 ⁄ 7, which is 0.14285714285714; to 14 significant figures) can be difficult to recognize in decimal form; as a result, many scientific calculators are able to work in vulgar fractions or mixed numbers.
An example of a fraction that cannot be represented by a decimal expression (with a finite number of digits) is 1 / 3 , 3 not being a power of 10. More generally, a decimal with n digits after the separator (a point or comma) represents the fraction with denominator 10 n , whose numerator is the integer obtained by removing the separator.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
The Little Professor was first released by Texas Instruments on June 13, 1976. [5] As the first electronic educational toy, [6] [7] the Little Professor is a common item on calculator collectors' lists. [8] In 1976, the Little Professor cost less than $20. More than 1 million units sold in 1977. [9]