Search results
Results from the WOW.Com Content Network
Three sequences, UAG, UGA, and UAA, known as stop codons, [note 1] do not code for an amino acid but instead signal the release of the nascent polypeptide from the ribosome. [7] In the standard code, the sequence AUG—read as methionine—can serve as a start codon and, along with sequences such as an initiation factor, initiates translation.
A tRNA is commonly named by its intended amino acid (e.g. tRNA-Asn), by its anticodon sequence (e.g. tRNA(GUU)), or by both (e.g. tRNA-Asn(GUU) or tRNA Asn GUU). [19] These two features describe the main function of the tRNA, but do not actually cover the whole diversity of tRNA variation; as a result, numerical suffixes are added to differentiate.
Stop codons are also called "termination" or "nonsense" codons. They signal release of the nascent polypeptide from the ribosome because no cognate tRNA has anticodons complementary to these stop signals, allowing a release factor to bind to the ribosome instead. [34]
These bacteria carry their own mutation that allows a recovery of function in the mutant viruses. For example, a mutation in the tRNA that recognizes the amber stop codon allows translation to "read through" the codon and produce a full-length protein, thereby recovering the normal form of the protein and "suppressing" the amber mutation. [19]
The anticodon is an RNA triplet complementary to the mRNA triplet that codes for their cargo amino acid. Aminoacyl tRNA synthetases catalyze the bonding between specific tRNAs and the amino acids that their anticodon sequences call for. The product of this reaction is an aminoacyl-tRNA.
For example, if the amino acid that attach to the end is phenylalanine, the reaction will be catalyzed by phenylalanine-tRNA synthase to produce tRNA phe. [4] The other end—the bottom often called the "DNA arm"—consists of a three base sequence that pairs with a complementary base sequence in a mRNA. [5]
In all three domains of life, the start codon is decoded by a special "initiation" transfer RNA different from the tRNAs used for elongation. There are important structural differences between an initiating tRNA and an elongating one, with distinguish features serving to satisfy the constraints of the translation system.
At the end of the initiation step, the mRNA is positioned so that the next codon can be translated during the elongation stage of protein synthesis. The initiator tRNA occupies the P site in the ribosome, and the A site is ready to receive an aminoacyl-tRNA. During chain elongation, each additional amino acid is added to the nascent polypeptide ...