Search results
Results from the WOW.Com Content Network
When an unbalanced system is rotating, periodic linear and/or torsional forces are generated which are perpendicular to the axis of rotation. The periodic nature of these forces is commonly experienced as vibration. These off-axis vibration forces may exceed the design limits of individual machine elements, reducing the service life of these parts.
Rotating unbalance is the uneven distribution of mass around an axis of rotation. A rotating mass, or rotor, is said to be out of balance when its center of mass (inertia axis) is out of alignment with the center of rotation (geometric axis). Unbalance causes a moment which gives the rotor a wobbling movement characteristic of vibration of ...
90° V angle: This design historically derives from chopping two cylinders off a 90° V8 engine, in order to reduce design and construction costs. An early example is the 3.3 L (200 cu in) and 3.8 L (229 cu in) Chevrolet 90° V6 engines , which have an 18° offset crankshaft resulting in an uneven firing interval.
In rotordynamical systems, the eigenfrequencies often depend on the rotation rates due to the induced gyroscopic effects or variable hydrodynamic conditions in fluid bearings. It might represent the following cases: Campbell Diagram of a steam turbine. Analysis shows that there are well-damped critical speed at lower speed range.
Rotordynamics (or rotor dynamics) is a specialized branch of applied mechanics concerned with the behavior and diagnosis of rotating structures. It is commonly used to analyze the behavior of structures ranging from jet engines and steam turbines to auto engines and computer disk storage .
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).
The Newton–Euler equations are used as the basis for more complicated "multi-body" formulations (screw theory) that describe the dynamics of systems of rigid bodies connected by joints and other constraints. Multi-body problems can be solved by a variety of numerical algorithms.
The above equation describes the behaviour of the rotor dynamics and hence is known as the swing equation. The angle is the angle of the internal EMF of the generator and it dictates the amount of power that can be transferred. This angle is therefore called the load angle.