Search results
Results from the WOW.Com Content Network
A solved game is a game whose outcome (win, lose or draw) can be correctly predicted from any position, assuming that both players play perfectly.This concept is usually applied to abstract strategy games, and especially to games with full information and no element of chance; solving such a game may use combinatorial game theory or computer assistance.
Pages in category "Solved games" The following 30 pages are in this category, out of 30 total. This list may not reflect recent changes. ...
This is a list of some of the more commonly known problems that are NP-complete when expressed as decision problems. As there are thousands of such problems known, this list is in no way comprehensive. Many problems of this type can be found in Garey & Johnson (1979).
Perfect information: A game has perfect information if it is a sequential game and every player knows the strategies chosen by the players who preceded them. Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if ...
One strategy for solving this version of the hat problem employs Hamming codes, which are commonly used to detect and correct errors in data transmission. The probability for winning will be much higher than 50%, depending on the number of players in the puzzle configuration: for example, a winning probability of 87.5% for 7 players.
Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...
In addition to posing a rather challenging mathematical game, the busy beaver functions Σ(n) and S(n) offer an entirely new approach to solving pure mathematics problems. Many open problems in mathematics could in theory, but not in practice, be solved in a systematic way given the value of S ( n ) for a sufficiently large n .
Sequential games are typically represented using decision trees, which map out all possible sequences of play, unlike the static matrices of simultaneous games. Examples include chess, infinite chess, backgammon, tic-tac-toe, and Go, with decision trees varying in complexity—from the compact tree of tic-tac-toe to the vast, unmappable tree of ...