Search results
Results from the WOW.Com Content Network
The phase space is the horizontal complex plane; the vertical axis measures the frequency with which points in the complex plane are visited. The point in the complex plane directly below the peak frequency is the fixed point attractor. A fixed point of a function or transformation is a point that is mapped to itself by the function or ...
The Rössler attractor Rössler attractor as a stereogram with =, =, = The Rössler attractor (/ ˈ r ɒ s l ər /) is the attractor for the Rössler system, a system of three non-linear ordinary differential equations originally studied by Otto Rössler in the 1970s.
The frequency response of this oscillator describes the amplitude of steady state response of the equation (i.e. ()) at a given frequency of excitation . For a linear oscillator with β = 0 , {\displaystyle \beta =0,} the frequency response is also linear.
A sample solution in the Lorenz attractor when ρ = 28, σ = 10, and β = 8 / 3 . The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz.
The multipactor effect is a phenomenon in radio-frequency (RF) amplifier vacuum tubes and waveguides, where, under certain conditions, secondary electron emission in resonance with an alternating electromagnetic field leads to exponential electron multiplication, possibly damaging and even destroying the RF device.
Rössler attractor reconstructed by Takens' theorem, using different delay lengths. Orbits around the attractor have a period between 5.2 and 6.2. In the study of dynamical systems, a delay embedding theorem gives the conditions under which a chaotic dynamical system can be reconstructed from a sequence of observations of the state of that system.
Schuler tuning is a design principle for inertial navigation systems that accounts for the curvature of the Earth. An inertial navigation system, used in submarines, ships, aircraft, and other vehicles to keep track of position, determines directions with respect to three axes pointing "north", "east", and "down".
The Hénon attractor is a fractal, smooth in one direction and a Cantor set in another. Numerical estimates yield a correlation dimension of 1.21 ± 0.01 or 1.25 ± 0.02 [2] (depending on the dimension of the embedding space) and a Box Counting dimension of 1.261 ± 0.003 [3] for the attractor of the classical map.